ENERGETIC GALERKIN BOUNDARY ELEMENT METHOD FOR 2D ELASTODYNAMICS: INTEGRAL OPERATORS WITH WEAK AND STRONG SINGULARITIES

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Multipole Boundary Element Method in 2D Elastodynamics

This paper is concerned with the fast multipole boundary element method (FMBEM) in two dimensional frequency domain elastodynamics. The fast multipole method (FMM) is derived by the Galerkin vector in the elastodynamic field. The elastodynamic field is expressed as the sum of the longitudinal and transverse wave fields, and the Galerkin vector FMM is simply derived from the scalar wave FMM. Mul...

متن کامل

Solution of Harmonic Problems with Weak Singularities Using Equilibrated Basis Functions in Finite Element Method

In this paper, Equilibrated Singular Basis Functions (EqSBFs) are implemented in the framework of the Finite Element Method (FEM), which can approximately satisfy the harmonic PDE in homogeneous and heterogeneous media. EqSBFs are able to automatically reproduce the terms consistent with the singularity order in the vicinity of the singular point. The newly made bases are used as the compliment...

متن کامل

A Numerical Boundary Integral Equation Method for Elastodynamics

The boundary initial value problems of elastodynamics are formulated as boundary integral equations. It is shown that these integral equations may be solved by time-stepping numerical methods for the unknown boundary values, A specific numerical scheme is presented for antiplane strain problems and a numerical example is given,

متن کامل

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...

متن کامل

Weak Galerkin Finite Element Method for Second Order Parabolic Equations

We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: WIT transactions on engineering sciences

سال: 2021

ISSN: ['1743-3533', '1746-4471']

DOI: https://doi.org/10.2495/be440021